308 research outputs found

    Constraints on the depth and geometry of the magma chamber of the Olympus Mons Volcano, Mars

    Get PDF
    The summit caldera of the Olympus Mons volcano exhibits one of the clearest examples of tectonic processes associated with shield volcanism on Mars. The radial distance from the center of the transition from concentric ridges to concentric graben within the oldest crater provides a constraint on the geometry and depth of the subsurface magmatic reservoir at the time of subsidence. Here, researchers use this constraint to investigate the size, shape, and depth of the reservoir. Their approach consists of calculating radial surface stresses corresponding to the range of subsurface pressure distributions representing an evacuating magma chamber. They then compare stress patterns to the observed radial positions of concentric ridges and graben. The problem is solved by employing the finite element approach using the program TECTON

    Mars Orbiter Laser Altimeter

    Get PDF
    The objective of this study was to support the rebuild and implementation of the Mars Orbiter Laser Altimeter (MOLA) investigation and to perform scientific analysis of current Mars data relevant to the investigation. The instrument is part of the payload of the NASA Mars Global Surveyor (MGS) mission. The instrument is a rebuild of the Mars Observer Laser Altimeter that was originally flown on the ill-fated Mars Observer mission. The instrument is currently in orbit around Mars and has so far returned remarkable data

    Foreword

    Get PDF
    In 1992 a small workshop in San Juan Capistrano marked the beginning of an innovation in planetary exploration, the Principal Investigator-led mission. NASA announced the establishment of a continuing “line item” in the budget for the development, launch and operation of missions led by a Principal Investigator from inside or outside NASA. These missions were to be less costly than flagship missions that addressed the major objectives of planetary exploration. They would be more focused, developed more quickly for flight, with a limited number of instruments and a limited number of investigators. They would ensure that the smaller but important objectives of the planetary program would be addressed. The first two missions were selected in a mode similar to the earlier selection process to get the program off to a quick start but soon a new process was established. The best mission or pair of missions was to be selected from a group of about thirty proposals. From this process arose missions approved to go to the Moon, bring back solar wind and comet samples, to excavate a crater on a comet, to orbit Mercury, to orbit main belt asteroids, and to identify Earth-like exoplanets

    Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios

    Get PDF
    International audienc

    Evolution of the Olympus Mons Caldera, Mars

    Get PDF
    Extensive high-resolution (15 to 20 m/pixel) coverage of Olympus Mons volcano permits the investigation of the sequence of events associated with the evolution of the nested summit caldera. The sequence of the intra-caldera events is well illustrated by image data collected on orbits 473S and 474S of Viking Orbiter 1. These data cover both the oldest and youngest portions of the caldera floor. The chronology inferred from the observations is presented which in turn can be interpreted in terms of the internal structure of the volcano (i.e., magma chamber depth and the existence of dikes)

    Topography of the Lunar South Polar Region: Implications for the Size and Location of Permanently Shaded Areas

    Get PDF
    We analyze Clementine altimetry to constrain the size and location of proposed permanently shadowed regions in the vicinity of the lunar south pole. Long and short wavelength topography in the vicinity of the pole, in combination with measurements of depths of well-preserved craters and basins and the lunar topographic power spectrum, have direct bearing on the nature of elevations in the south polar region. A criterion based on geometric considerations and altimetry demonstrates that the existence of permanent shadowing is not very sensitive to the elevation of the south pole. In addition, permanent shadowing cannot be a consequence of large structures such as the South Pole-Aitken Basin and/or a 300-km degraded polar basin. Perennially dark regions, if they exist, are most likely associated with craters or other axisymmetric features with diameters of at most 80 km centered at the pole. For structures displaced 2 deg from the pole the maximum allowable diameter decreases to approximately 30 km

    Statistics of Mars' topography from the Mars Orbiter Laser Altimeter: Slopes, correlations, and physical Models

    Get PDF
    Data obtained recently by the Mars Orbiter Laser Altimeter (MOLA) were used to study the statistical properties of the topography and slopes on Mars. We find that the hemispheric dichotomy, manifested as an elevation difference, can be described by long baseline tilts but in places is expressed as steeper slopes. The bimodal hypsometry of elevations on Mars becomes unimodal when referenced to the center of figure, contrary to the Earth, for which the bimodality is retained. However, ruling out a model in which the elevation difference is expressed in a narrow equatorial topographic step cannot be done by the hypsometry alone. Mars' slope distribution is longer tailed than those of Earth and Venus, indicating a lower efficiency of planation processes relative to relief-building tectonics and volcanics. We define and compute global maps of statistical estimators, including the interquartile scale, RMS and median slope, and characteristic decorrelation length of the surface. A correspondence between these parameters and geologic units on Mars is inferred. Surface smoothness is distinctive in the vast northern hemisphere plains, where slopes are typically <0.5°. Amazonis Planitia exhibits a variation in topography of <1 m over 35-km baselines. The region of hematite mineralization in Sinus Meridiani is also smooth, with median slopes lower than 0.4°, but does not form a closed basin. The shallower long-wavelength portion of the lowlands' topographic power spectrum relative to the highlands' can be accounted for by a simple model of sedimentation such as might be expected at an ocean's floor. The addition of another process such as cratering is necessary to explain the spectral slope in short wavelengths. Among their application, these MOLA-derived roughness measurements can help characterize sites for landing missions

    Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection

    Get PDF
    Layered viscosity, temperature-dependent viscosity, and surface plates have an important effect on the scale and morphology of structure in spherical models of mantle convection. We find that long-wavelength structures can be produced either by a layered viscosity with a weak upper mantle or temperature-dependent viscosity even in the absence of surface plates, corroborating earlier studies, However,combining the layered viscosity structure with a temperature-dependent viscosity results in structure with significantly shorter wavelengths. Our models show that the scale of convection is mainly controlled by the surface plates, supporting the previous two-dimensional studies. Our models with surface plates: layered and temperature-dependent viscosity, and internal heating explain mantle structures inferred from seismic tomography. The models show that hot upwellings initiate at the core-mantle boundary (CMB) with linear structures, and as they depart from CMB, the linear upwellings quickly change into quasi-cylindrical plumes that dynamically interact with the ambient mantle and surface plates while ascending through the mantle. A linear upwelling structure is generated again at shallow depths (<200 km) in the vicinity of diverging plate margins because of the surface plates. At shallow depths, cold downwelling sheets form at converging plate margins. The evolution of downwelling sheets depends on the mantle rheology. The temperature-dependent viscosity strengthens the downwelling sheets so that the sheet structure can be maintained throughout the mantle. The tendency for linear upwelling and downwelling structures to break into plume-like structures is stronger at higher Rayleigh numbers. Our models also show that downwellings tp first-order control surface plate motions and the locations and horizontal motion of upwellings. Upwellings tend to form at stagnation points predicted solely from the buoyancy forces of downwellings. Temperature-dependent viscosity greatly enhances tb: ascending velocity of developed upwelling plumes, and this may reduce the influence of global mantle flow on the motion of plumes. Our results can explain the anticorrelation between hotspot distribution and fast seismic wave speed anomalies in the lower mantle and may also have significant implications to the observed stationarity of hotspots

    Chondrites as samples of differentiated planetesimals

    Get PDF
    Chondritic meteorites are unmelted and variably metamorphosed aggregates of the earliest solids of the solar system. The variety of metamorphic textures in chondrites motivated the “onion shell” model in which chondrites originated at varying depths within a parent body heated primarily by the short-lived radioisotope 26Al, with the highest metamorphic grade originating nearest the center. Allende and a few other chondrites possess a unidirectional magnetization that can be best explained by a core dynamo on their parent body, indicating internal melting and differentiation. Here we show that a parent body that accreted to >~200 km in radius by ~ 1.5 Ma after the formation of calcium–aluminum-rich inclusions (CAIs) would have a differentiated interior, and ongoing accretion would add a solid undifferentiated crust overlying a differentiated interior, consistent with formational and evolutionary constraints inferred for the CV parent body. This body could have produced a magnetic field lasting more than 10 Ma. This hypothesis represents a new model for the origin of some chondrites, presenting them as the unprocessed crusts of internally differentiated early planetesimals. Such bodies may exist in the asteroid belt today; the shapes and masses of the two largest asteroids, 1 Ceres and 2 Pallas, can be consistent with differentiated interiors, conceivably with small iron cores with hydrated silicate or ice–silicate mantles, covered with undifferentiated crusts.National Science Foundation (U.S.) (NSF Astronomy CAREER grant)Mitsui & Co. (U.S.A.), Inc. ( Mitsui Career Development Professorship)United States. National Aeronautics and Space Administration (NASA Origins grant)Massachusetts Institute of Technology (Victor P. Starr Career Development Professorship)United States. National Aeronautics and Space Administration (NASA/Dawn co-investigator grant

    Planetary geosciences, 1989-1990

    Get PDF
    NASA's Planetary Geosciences Programs (the Planetary Geology and Geophysics and the Planetary Material and Geochemistry Programs) provide support and an organizational framework for scientific research on solid bodies of the solar system. These research and analysis programs support scientific research aimed at increasing our understanding of the physical, chemical, and dynamic nature of the solid bodies of the solar system: the Moon, the terrestrial planets, the satellites of the outer planets, the rings, the asteroids, and the comets. This research is conducted using a variety of methods: laboratory experiments, theoretical approaches, data analysis, and Earth analog techniques. Through research supported by these programs, we are expanding our understanding of the origin and evolution of the solar system. This document is intended to provide an overview of the more significant scientific findings and discoveries made this year by scientists supported by the Planetary Geosciences Program. To a large degree, these results and discoveries are the measure of success of the programs
    corecore